设A{2, -1, a2-a +1},B
{2b, -4, a + 4} ,M
{-1, 7},A∩B
M.
(1)设全集,求
(2)求a和b的值
已知函数f(x)=lnx﹣ax2﹣2x(a<0)
(1)若函数f(x)在定义域内单调递增,求a的取值范围;
(2)若a=﹣且关于x的方程f(x)=﹣
x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.
如图所示,等腰△ABC的底边,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AC,记BE=x,V(x)表示四棱锥P﹣ACFE的体积.
(1)求V(x)的表达式;
(2)当x为何值时,V(x)取得最大值?
(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值.
已知向量=(2sinx,
cosx),
=(sinx,2sinx),函数f(x)=
·
.
(1)求f(x)的单调递增区间;
(2)若不等式f(x)≥m对x∈[0,]都成立,求实数m的最大值.
已知函数(a是常数,a∈R)
(1)当a=1时求不等式的解集.
(2)如果函数恰有两个不同的零点,求a的取值范围.
已知曲线(
为参数),曲线
,将
的横坐标伸长为原来的2倍,纵坐标缩短为原来的
得到曲线
.
(1)求曲线的普通方程,曲线
的直角坐标方程;
(2)若点P为曲线上的任意一点,Q为曲线
上的任意一点,求线段
的最小值,并求此时的P的坐标.