如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字。有人为甲、乙两人设计了一个游戏,其规则如下:
⑴同时自由转动转盘A与B;
⑵转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜)。你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由。
如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F.求证:DE=DF.
(6分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.
如图1,在平面直角坐标系中,为坐标原点.直线
与抛物线
同时经过
.
(1)求的值.
(2)点是二次函数图象上一点,(点
在
下方),过
作
轴,与
交于点
,与
轴交于点
.求
的最大值.
(3)在(2)的条件下,是否存在点,使
和
相似?若存在,求出
点坐标,不存在,说明理由.
中,AB=AC,将线段AB绕点A按逆时针方向旋转
得到线段AD,其中
.连结BD,CD,
.
(1)若,
,在图1中补全图形,并写出m值.
(2)如图2,当为钝角,
时 ,
值是否发生改变?证明你的猜想.
(3) 如图3,,
,BD与AC相交于点O,求
与
的面积比.
在平面直角坐标系中,抛物线
的开口向下,且抛物线与
轴的交于点
,与
轴交于
,
两点,(
在
左侧). 点
的纵坐标是
.
(1)求抛物线的解析式;
(2)求直线的解析式;
(3)将抛物线在点左侧的图形(含点
)记为
.若直线
与直线
平行,且与
图形恰有一个公共点,结合函数图象写出
的取值范围.