游客
题文

已知,直线与直线.

(1)求两直线与轴交点A,B的坐标;
(2)求两直线交点C的坐标;
(3)求△ABC的面积.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

解不等式,并把解集在数轴上表示出来,

计算

将一张矩形纸片沿对角线剪开(如图1),得到两张三角形纸片(如图2),量得他们的斜边长为 6cm,较小锐角为30° ,再将这两张三角纸片摆成如图3的形状,且点 A、C、E、F 在同一条直线上,点 C 与点 E 重合, 保持不动,OB 为的中线,现对纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的沿CA向右平移,直到两个三角形完全重合为止.设平移距离 CE 为 x(即 CE 的长),求平移过程中,重叠部分的面积 S 与 x 的函数关系式,以及自变量的取值范围;
(2) 平移到 E 与O 重合时(如图4),将绕点 O 顺时针旋转,旋转过程中的斜边 EF交的 BC 边于 G,求点 C、O、G构成等腰三角形时,的面积;
(3)在(2)的旋转过程中, 的边 DE,EF分别交线段BC于点 G、H(不与端点重合).求旋转角为多少度时,线段BH、GH、CG之间满足 , 请说明理由.

2010年8月31日,全国绿化委员会、 国家林业局、 重庆市人民政府共同发起“绿化长江重庆行动”, 该行动就是要加快长江两岸造林绿化步伐,保护母亲河,促进入与自然和谐共生.某园艺公司从 9 月开始积极响应这一行动,进行植树造林.该公司第 x 月种植树木的亩数 y(亩)与 x 之间满足,(其中x从9月算起,即9月时 x=l,10月时x=2,…,且,x为正整数).但由于植树规模增加,每亩的收益会相应降低,每亩的收益 P(千元)与种植树木亩数 y(亩)之间的关系如下表:

亩数y(亩)
5
6
7
8

每亩收益P(千元/亩)
46
44
42
40

(1)请观察题中的表格,用所学过的一次函数、二次函数和反比例函数的有关知识求出 P与 y 之间所 满足的函数关系表达式:
(2)求该行动实施六个月来,第几月的总收益最大?此时每亩收益为多少?
(3)进入三月份,便是植树造林的“黄金期”,为此政府出台了一项激励措施:在“植树造林”过程中, 每月植树面积与二月份植树面积相同的部分,按二月份每亩收益进行结算;超出二月份植树面积 的部分,每亩收益将按二月份时每亩的收益再增加 0.6a%进行结算.这样,该公司三月份植树面积比二月份的植树面积增加了a%.另外,三月份时公司需对三月份之前种植的所有树木进行保养, 除去成本后政府给予每亩 5a%千元的保养补贴.最后,该公司三月份获得种植树木的收益和政府 保养补贴共 702 千元.请通过计算,估算出 a 的整数值.
(参考数据:)

如图,在梯形中,,在上截取,使,过点,交于点,连接,交于点,交于点

(1)求证:
(2)已知,求的长。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号