如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道足够长。已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2。
(1)求导体棒ab从A下落r/2时的加速度大小。
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和ab进入磁场II时R2上的电功率P2。
(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式。
节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车。有一质量m=1000kg的混合动力轿车,在平直公路上以
匀速行驶,发动机的输出功率为
。当驾驶员看到前方有80km/h的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动L=72m后,速度变为
。此过程中发动机功率的
用于轿车的牵引,
用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能。假设轿车在上述运动过程中所受阻力保持不变。求
1)轿车以
在平直公路上匀速行驶时,所受阻力
的大小;
2)轿车从
减速到
过程中,获得的电能
;
3)轿车仅用其在上述减速过程中获得的电能
维持
匀速运动的距离
。
在如图所示xoy坐标系第一象限的三角形区域(坐标如图中所标注
和
)内有垂直于纸面向外的匀强磁场,在x 轴下方有沿+y方向的匀强电场,电场强度为E。将一个质量为m、带电量为+q的粒子(重力不计)从P(0,-a)点由静止释放。由于x轴上存在一种特殊物质,使粒子每经过一次x轴后(无论向上和向下)速度大小均变为穿过前的
倍。
(1)欲使粒子能够再次经过x轴,磁场的磁感应强度B0最小是多少?
(2)在磁感应强度等于第(1)问中B0的情况下,求粒子在磁场中的运动时间。
如图所示,有一个可视为质点的质量为m =" 1" kg的小物块,从光滑平台上的A点以v0 =" 3" m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M =" 3" kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ = 0.3,圆弧轨道的半径为R = 0.5m,C点和圆弧的圆心连线与竖直方向的夹角θ = 53°,不计空气阻力,取重力加速度为g="10" m/s2.求:
⑴ AC两点的高度差;
⑵ 小物块刚要到达圆弧轨道末端D点时对轨道的压力;
⑶ 要使小物块不滑出长木板,木板的最小长度.
(
)
两根相距L=0.5m的足够长的金属导轨如图甲所示放置,他们各有一边在同一水平面上,另一边垂直于水平面。金属细杆ab、cd的质量均为m=0.05kg,电阻均为R=1.0Ω,它们与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数μ=0.5,导轨电阻不计。整个装置处于磁感应强度大小B=1.0T、方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下沿导轨向右运动时,从某一时刻开始释放cd杆,并且开始计时,cd杆运动速度
随时间变化的图像如图乙所示(在0~1s和2~3s内,对应图线为直线。g=10m/s2)。求:


(1)在0~1s时间内,回路中感应电流I1的大小;
(2)在0~3s时间内,ab杆在水平导轨上运动的最大速度Vm;
(3)已知1~2s内,ab杆做匀加速直线运动,写出1~2s内拉力F随时间t变化的关系式,并在图丙中画出在0~3s内,拉力F随时间t变化的图像。(不需要写出计算过程,只需写出表达式和画出图线)