如图所示,某货场而将质量为m1="100" kg的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物中轨道顶端无初速滑下,轨道半径R="1.8" m。地面上紧靠轨道次排放两声完全相同的木板A、B,长度均为l=2m,质量均为m2="100" kg,木板上表面与轨道末端相切。货物与木板间的动摩擦因数为1,木板与地面间的动摩擦因数
=0.2。(最大静摩擦力与滑动摩擦力大小相等,取g="10" m/s2)
求货物到达圆轨道末端时对轨道的压力。
若货物滑上木板A时,木板不动,而滑上木板B时,木板B开始滑动,求
1应满足的条件。
下图是汤姆孙用来测定电子比荷(电子的电荷量与质量之比)的实验装置示意图,某实验小组的同学利用此装置进行了如下探索:
①真空管内的阴极K发出的电子经加速后,穿过A'中心的小孔沿中心线OP的方向进入到两块水平正对放置的平行极板M和N间的区域。当M和N间不加偏转电压时,电子束打在荧光屏的中心P点处,形成了一个亮点;
②在M和N间加上偏转电压U后,亮点偏离到P1点;
③在M和N之间再加上垂直于纸面向外的匀强磁场,调节磁场的强弱,当磁感应强度的大小为B时,电子在M、N间作匀速直线运动,亮点重新回到P点;
④撤去M和N间的偏转电压U,只保留磁场B,电子在M、N间作匀速圆周运动,亮点偏离到P2点。若视荧光屏为平面,测得P、P2的距离为y。
已知M和N极板的长度为L1,间距为d,它们的右端到荧光屏中心P点的水平距离为L2,不计电子所受的重力和电子间的相互作用。
(1)求电子在M、N间作匀速直线运动时的速度大小;
(2)写出电子在M、N间作匀速圆周运动的轨迹半径r与L1、L2及y之间的关系式;
(3)若已知电子在M、N间作匀速圆周运动的轨迹半径r,求电子的比荷;
(4)根据该小组同学的探索,请提出估算电子比荷的其他方案及需要测量的物理量。
如图所示,由粗细均匀、同种金属导线构成的正方形线框abcd放在光滑的水平桌面上,线框边长为L,其中ab段的电阻为R。在宽度也为L的区域内存在着磁感应强度为B的匀强磁场,磁场的方向竖直向下。线框在水平拉力的作用下以恒定的速度v通过匀强磁场区域,线框始终与磁场方向垂直且无转动。求:
(1)在线框的cd边刚进入磁场时,bc边两端的电压Ubc;
(2)为维持线框匀速运动,水平拉力的大小F;
(3)在线框通过磁场的整个过程中,bc边金属导线上产生的热量Qbc。
变化的磁场可以激发感生电场,电子感应加速器就是利用感生电场使电子加速的设备。它的基本原理如图所示,上、下为两个电磁铁,磁极之间有一个环形真空室,电子在真空室内做圆周运动。电磁铁线圈电流的大小、方向可以变化,在两极间产生一个由中心向外逐渐减弱、而且变化的磁场,这个变化的磁场又在真空室内激发感生电场,其电场线是在同一平面内的一系列同心圆,产生的感生电场使电子加速。图1中上部分为侧视图、下部分为俯视图。已知电子质量为m、电荷量为e,初速度为零,电子圆形轨道的半径为R。穿过电子圆形轨道面积的磁通量Φ随时间t的变化关系如图2所示,在t0时刻后,电子轨道处的磁感应强度为B0,电子加速过程中忽略相对论效应。
|
(1)求在t0时刻后,电子运动的速度大小;
(2)求电子在整个加速过程中运动的圈数;低空跳伞是一种极限运动,一般在高楼、悬崖、高塔等固定物上起跳。人在空中降落过程中所受空气阻力随下落速度的增大而增大,而且速度越大空气阻力增大得越快。因低空跳伞下落的高度有限,导致在空中调整姿态、打开伞包的时间较短,所以其危险性比高空跳伞还要高。
一名质量为70kg的跳伞运动员背有质量为10kg的伞包从某高层建筑顶层跳下,且一直沿竖直方向下落,其整个运动过程的v-t图象如图所示。已知2.0s末的速度为18m/s,10s末拉开绳索开启降落伞,16.2s时安全落地,并稳稳地站立在地面上。g取10m/s2,请根据此图象估算:
(1)起跳后2s内运动员(包括其随身携带的全部装备)所受平均阻力的大小;
(2)运动员从脚触地到最后速度减为零的过程中,若不计伞的质量及此过程中的空气阻力,则运动员所需承受地面的平均冲击力多大;
(3)开伞前空气阻力对跳伞运动员(包括其随身携带的全部装备)所做的功(结果保留三位有效数字)。
如图所示,在倾角为30°的斜面上,固定一宽度为L=0.25m的足够长平行金属光滑导轨,在导轨上端接入电源和滑动变阻器。电源电动势为E=3.0V,内阻为r=1.0Ω。一质量m=20g的金属棒ab与两导轨垂直并接触良好。整个装置处于垂直于斜面向上的匀强磁场中,磁感应强度为B=0.80T。导轨与金属棒的电阻不计,取g="10" m/s2。
(1)如要保持金属棒在导轨上静止,滑动变阻器接入到电路中的阻值是多少;
(2)如果拿走电源,直接用导线接在两导轨上端,滑动变阻器阻值不变化,求金属棒所能达到的最大速度值;
(3)在第(2)问中金属棒达到最大速度前,某时刻的速度为10m/s,求此时金属棒的加速度大小。