游客
题文

如图所示,质量mB=3.5kg的物体B通过一轻弹簧固连在地面上,弹簧的劲度系数k=100N/m.一轻绳一端与物体B连接,绕过无摩擦的两个轻质小定滑轮O1、O2后,另一端与套在光滑直杆顶端的、质量mA=1.6kg的小球A连接.已知直杆固定,杆长L为0.8m,且与水平面的夹角θ=37°.初始时使小球A静止不动,与A端相连的绳子保持水平,此时绳子中的张力F为45N. 已知A O1=0.5m,绳子不可伸长.现将小球A从静止释放(重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8)。求:

在释放小球A前弹簧的形变量;
若直线C O1与杆垂直,求物体A运动到C点的过程中绳子拉力对物体A所做的功;
求小球A运动到底端D点时的速度.

科目 物理   题型 计算题   难度 中等
登录免费查看答案和解析
相关试题

如图甲所示为电视机中的显像管的原理示意图,电子枪中的灯丝加热阴极而逸出电子,这些电子再经加速电场加速后,从O点进入由磁偏转线圈产生的偏转磁场中,经过偏转磁场后打到荧光屏MN上,使荧光屏发出荧光形成图像,不计逸出的电子的初速度和重力。已知电子的质量为m、电荷量为e,加速电场的电压为U,偏转线圈产生的磁场分布在边长为l的正方形abcd区域内,磁场方向垂直纸面,且磁感应强度随时间的变化规律如图乙所示。在每个周期内磁感应强度都是从-B0均匀变化到B0。磁场区域的左边界的中点与O点重合,ab边与OO′平行,右边界bc与荧光屏之间的距离为s。由于磁场区域较小,且电子运动的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,即为匀强磁场,不计电子之间的相互作用。求:

(1)为使所有的电子都能从磁场的bc边射出,求偏转线圈产生磁场的磁感应强度的最大值。
(2)若所有的电子都能从磁场的bc边射出时,荧光屏上亮线的最大长度是多少?

一带电粒子无初速度的进入一加速电场A,然后垂直进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),如图所示。已知加速电场A板间电压为U1,M、N两板间的电压为U2,两板间的距离为d,板长为L,粒子的质量为m,电荷量为q,不计粒子受到的重力及它们之间的相互作用力。求:

(1)粒子穿过A板时速度大小v0
(2)粒子从偏转电场射出时的侧移量y;
(3)粒子从偏转电场射出时速度的偏转角q

如图所示,M′MNN′为放置在粗糙绝缘水平面上的U型金属框架,MM′和NN′相互平行且足够长,间距l=0.40m,质量M=0.20kg。质量m=0.10kg的导体棒ab垂直于MM′和NN′放在框架上,导体棒与框架的摩擦忽略不计。整个装置处于竖直向下的匀磁场中,磁感应强度B=0.50T。t=0时,垂直于导体棒ab施加一水平向右的恒力F=2.0N,导体棒ab从静止开始运动;当t=t1时,金属框架将要开始运动,此时导体棒的速度v1=6.0m/s;经过一段时间,当t=t2时,导体棒ab的速度v2=12.0m/s;金属框架的速度v3=0.5m/s。在运动过程中,导体棒ab始终与MM′和NN′垂直且接触良好。已知导体棒ab的电阻r=0.30Ω,框架MN部分的阻值R=0.10Ω,其余电阻不计。设框架与水平面间的最大静摩擦力等于滑动摩擦力,g取10m/s2。求:

(1)求动摩擦因数μ;
(2)当t=t2时,求金属框架的加速度;
(3)若在0~t1这段时间内,MN上产生的热量 Q=0.10J,求该过程中导体棒ab位移x的 大小。

如图14所示,在坐标系xoy的第一象限内存在匀强磁场,磁场方向垂直于xoy面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E。一质量为m、带电荷量为的粒子自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限。已知P点坐标为(0,-2),Q点坐标为(4,0),不计粒子重力。求:

(1)求粒子过Q点时速度的大小。
(2)若磁感应强度的大小为一定值B,粒子将以垂直y轴的方向经H点进入第二象限,求B的大小及H点的坐标值;
(3)求粒子在第一象限内运动的时间t。

质量为m的小球A以速率v0向右运动时跟静止的小球B发生碰撞,碰后A球以的速率反向弹回,而B球以的速率向右运动,求:
(1)小球B的质量mB是多大?
(2)碰撞过程中,小球B对小球A做功W是多大?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号