(本小题满分12分)如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1.(I)证明PA⊥平面ABCD;(II)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论
设函数,其中向量, 向量. (1)求的最小正周期; (2)在中,分别是角的对边,, 求的长.
已知:对任意,不等式恒成立;:存在,使不等式成立,若“或”为真,“且”为假,求实数的取值范围.
在平面直角坐标系中,. (1)求以线段为邻边的平行四边形的两条对角线的长; (2)设实数满足,求的值.
(本小题满分14分) 已知数列,, (Ⅰ)求数列的通项公式; (Ⅱ)当时,求证: (Ⅲ)若函数满足: 求证:
(本小题满分13分) 已知函数. (Ⅰ)求函数的极大值; (Ⅱ)若对满足的任意实数恒成立,求实数的取值范围(这里是自然对数的底数); (Ⅲ)求证:对任意正数、、、,恒有.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号