(本小题满分12分)
在数列{an}中,a1=2,a2=8,且已知函数(
)在x=1时取得极值.(Ⅰ)求证:数列{an+1—2an}是等比数列,(Ⅱ)求数列
的通项an;(Ⅲ)设
,且
对于
恒成立,求实数m的取值范围.
已知等差数列{}的首项为
a
.设数列的前n项和为Sn,且对任意正整数n都有
.
(1)求数列{}的通项公式及Sn;
(2)是否存在正整数n和k,使得成等比数列?若存在,求出n和k的值;若不存在,请说明理由.
成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的
、
、
.
(1)求数列的通项公式;
(2)数列的前n项和为
,求证:数列
是等比数列.
已知向量,
(1)求;
(2)若的最小值是
,求实数
的值.
在锐角△ABC中,角A,B,C的对边分别为a,b,c.已知sin(A-B)=cosC.
(1)若a=3,b=
,求c;
(2)求的取值范围.
在中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.
(1)若,求边c的值;
(2)设,求t的最大值.