游客
题文

在“春季经贸洽谈会”上,我市某服装厂接到生产一批出口服装的订单,要求必须在12天(含12天)内保质保量完成,且当天加工的服装当天立即空运走。为了加快进度,车间采取工人轮流休息,机器满负荷运转的生产方式,生产效率得到了提高。这样每天生产的服装数量y(套)与时间x(元)的关系如下表

由于机器损耗等原因,当每天生产的服装数达到一定量后,平均每套服装的成本会随着服装产量的增加而增大,这样平均每套服装的成本z(元)与生产时间x(天)的关系如图所示.

判断每天生产的服装的数量y(套)与生产时间x(元)之间是我们学过的哪种函数关系?并验证
已知这批外贸服装的订购价格为每套1570元,设车间每天的利润为w(元).求w(元)与x(天)之间的函数关系式,并求出哪一天该生产车间获得最高利润,最高利润是多少元?
从第6天起,该厂决定该车间每销售一套服装就捐a元给山区的留守儿童作为建图书室的基金,但必须保证每天扣除捐款后的利润随时间的增大而增大.求a的最大值,此时留守儿童共得多少元基金

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

已知函数.

(1)请在同一坐标系中画出这两个函数的图象;
(2)求出这两个函数图像的交点坐标;
(3)观察图象,回答当x取何值时.

仔细阅读下面例题,解答问题:
例题: 已知二次三项式有一个因式是,求另一个因式以及的值.
解:设另一个因式为,得
.
.

解得: .
∴另一个因式为的值为-21 .
问题:仿照以上方法解答下面问题:
已知二次三项式有一个因式是,求另一个因式以及的值.

已知平面直角坐标系中有A(-2,1),B(2,3)两点.
(1)在x轴上找一点C,使CA+CB最小,并求出点C的坐标;
(2)在x轴上找一点D,使等△ABD为等腰三角形,并通过画图说明使△ABD为等腰三角形的点D有多少个.

在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.

(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);
(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.

如图,有两个的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时满足以下要求:

(1)线段的一个端点为梯形的顶点,另一个端点在梯形一边的格点上;
(2)将梯形分成两个图形,其中一个是轴对称图形;
(3)图1、图2中分成的轴对称图形不全等.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号