如图①,在等腰直角三角板ABC中,斜边BC为2个单位长度,现把这块三角板在平面直角坐标系xOy中滑动,并使B、C两点始终分别位于y轴、x轴的正半轴上,直角顶点A与原点O位于BC两侧。
(1) 取BC中点D,问OD+DA是否发生改变,若会,说明理由;若不会,求出OD+DA;(2分。)
(2) 你认为OA的长度是否会发生变化?若变化,那么OA最长是多少?OA最长时四边形OBAC是怎样的四边形?并说明理由;(4分。)
(3) 填空:当OA最长时A的坐标*( , ),直线OA的解析式 。(2分。)
图① 图②备用
有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.
(1)请用列表或画树状图的方法表示出上述试验所有可能结果;
(2)求一次打开锁的概率.
如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.
直线经过点(3,5),求关于
的不等式
≥0的解集.
解方程:.
如图,一次函数(m<0)的图象经过定点A,与x轴交于点B,与y轴交于点E,AD⊥y轴于点D,将射线AB沿直线AD翻折,交y轴于点C.
(1)用含m的代数式分别表示点B,点E的坐标;
(2)若△ABC中AC边上的高为5,求m的值;
(3)若点P为线段AC中点,是否存在m的值,使△APD与△ABD相似?若存在,请求出m的值;若不存在,请说明理由.