已知函数 ,
.
(Ⅰ)当 时,求函数
的最小值;
(Ⅱ)当 时,讨论函数
的单调性;
(Ⅲ)求证:当 时,对任意的
,且
,有
.
如图,在三棱锥中,
是等边三角形,
.
(1)证明::;
(2)证明:;
(3)若,且平面
平面
,求三棱锥
体积.
在中,内角
、
、
的对边分别为
、
、
,且
.
(1)求角的大小;
(2)若,
,求
的面积.
正四面体ABCD的体积为V,P是正四面体ABCD的内部的一个点.
(1)设“VPABC≥V”的事件为X,求概率P(X);
(2)设“VPABC≥V”且“VPBCD≥
V”的事件为Y,求概率P(Y).
“抛阶砖”是国外游乐场的典型游戏之一.参与者只须将手上的“金币”(设“金币”的半径为1)抛向离身边若干距离的阶砖平面上,抛出的“金币”若恰好落在任何一个阶砖(边长为2.1的正方形)的范围内(不与阶砖相连的线重叠),便可获大奖.不少人被高额奖金所吸引,纷纷参与此游戏但很少有人得到奖品,请用所学的概率知识解释这是为什么.
某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:
(1)该队员只属于一支球队的概率;
(2)该队员最多属于两支球队的概率.