某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,
他获得返券的金额记为(元).求随机变量
的分布列和数学期望.
(本小题共12分)
已知函数
(Ⅰ)求的值;
(Ⅱ)求的最大值和最小值
(本小题共10分)
已知为等差数列,且
,
。
(Ⅰ)求的通项公式;
(Ⅱ)若等比数列满足
,
,求
的前n项和公式
记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.
(1)求A;
(2)若BA,求实数a的取值范围.
已知α是第一象限的角,且cosα=的值.
某乡镇供电所为了调查农村居民用电量情况,随机抽取了500户居民去年的月均用电量(单位:kw/h),将所得数据整理后,画出频率分布直方图如下,其中直方图从左到右前3个小矩形的面积之比为1︰2︰3,试估计:
(Ⅰ)该乡镇月均用电量在39.5~43.5的居民所占百分比约是多少?
(Ⅱ)该乡镇居民月均用电量的中位数约是多少?(精确到0.01)