游客
题文

平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q。

求经过B、E、C三点的抛物线的解析式;
判断⊿BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标
若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由。

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

已知反比例函数y=的图象与二次函数y=ax2+x-1的图象相交于点A(2,2)
(1)求a的值;
(2)反比例函数的图象是否经过二次函数图象的顶点,请说明理由.

已知:如图,在平面直角坐标系中,直线轴交于点,与反比例函数在第一象限内的图象交于点,连结,若.求该反比例函数的解析式和直线的解析式.

已知,求的值.

计算:

已知:如图,抛物线)与轴交于点( 0,4) ,与轴交于点,点的坐标为(4,0).

(1) 求该抛物线的解析式;
(2) 点是线段上的动点,过点,交于点,连接. 当的面积最大时,求点的坐标;
(3)若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为(2,0). 问: 是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号