游客
题文

如图1,在中,,另有一等腰梯形)的底边重合,两腰分别落在AB、AC上,且G、F分别是AB、AC的中点.

直接写出△AGF与△ABC的面积的比值;
操作:固定,将等腰梯形以每秒1个单位的速度沿方向向右运动,直到点与点重合时停止.设运动时间为秒,运动后的等腰梯形为(如图2).

①探究1:在运动过程中,四边形能否是菱形?若能,请求出此时的值;若不能,请说明理由.
②探究2:设在运动过程中与等腰梯形重叠部分的面积为,求的函数关系式.

科目 数学   题型 解答题   难度 较易
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

(1)计算: | 1 - 3 | + 3 tan 30 - ( 3 - 5 ) 0 - - 1 3 - 1

(2)解不等式组 2 x + 1 > 0 2 - x 2 x + 3 3

如图1所示,已知:点A(﹣2,﹣1)在双曲线 C: y = a x 上,直线l1y=﹣x+2,直线l2l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为BP是曲线C上第一象限内异于B的一动点,过Px轴平行线分别交l1l2MN两点.

(1)求双曲线C及直线l2的解析式;

(2)求证: P F 2 P F 1 MN 4

(3)如图2所示,△PF1F2的内切圆与F1F2PF1PF2三边分别相切于点QRS,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点Ax1y1),Bx2y2),则AB两点间的距离公式为 AB = x 1 - x 2 2 + y 1 - y 2 2 .

在△ABC中,ABAC,∠BAC=2∠DAE=2α.

(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC

(2)如图2,在(1)的条件下,若α=45°,求证:DE2BD2+CE2

(3)如图3,若α=45°,点EBC的延长线上,则等式DE2BD2+CE2还能成立吗?请说明理由.

科技馆是少年儿童节假日游玩的乐园.

如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为 y = a x 2 , 0 x 30 b ( x + n , 30 x 90 ,10:00之后来的游客较少可忽略不计.

(1)请写出图中曲线对应的函数解析式;

(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?

如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为ABBC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角 BAF 30 ° CBE 45 °

(1)求AB段山坡的高度EF

(2)求山峰的高度CF.( 2 1 . 414 CF结果精确到米)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号