如图以y轴为边界,右边是一个水平向左的E1=1×104N/C匀强电场,左边是一个与水平方向成45°斜向上的E2=
×104N/C匀强电场,现有一个质量为m=1.0g,带电量q=1.0×10-6C小颗粒从坐标为(0.1,0.1)处静止释放。忽略阻力,g=10m/s2。
求(1)第一次经过y轴时的坐标及时间
(2)第二次经过y轴时的坐标
(3)第二次经过y轴时小颗粒的速度大小
(15分)如图所示,质量
、长
的质量分布均匀的矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为
。(取
)
(1)求能使薄板由静止开始运动的最小水平推力大小;
(2)现用F=5N的水平力向右推薄板,能使它翻下桌子,F作用的时间至少为多少。
(1)在同一地点有两个静止的声源,发出声波1和声波2在同一空间的空气中沿同一方向传播,如图1所示为某时刻这两列波的图像,则下列说法中正确的是
| A.波1速度比波2速度大 |
| B.相对于同一障碍物,波2比波1更容易发生衍射现象 |
| C.这两列波传播的方向上,不会产生稳定的干涉现象 |
| D.这两列波传播的方向上运动的观察者,听到的这两列波的频率均与从声源发出时的频率相同 |
(2)如图2所示是一透明的圆柱体的横截面,其半径为
,折射率是
,AB是一条直径。今有一束平行光沿AB方向射向圆柱体,试求离AB多远的入射光线经折射后经过B点?
(1)如图1所示气缸内密封的气体(可视为理想气体),在等压膨胀过程中,下列关于气体说法正确的是
| A.气体内能可能减少 |
| B.气体会向外界放热 |
| C.气体吸收热量大于对外界所做的功 |
| D.气体平均动能将减小 |
(2)一定质量的理想气体,由状态A经过等压变化到状态B,再经过等温变化到状态C,如图2所示,已知气体在状态A的温度
=300K。求气体在状态B的温度
和在状态C的体积
。
为了获得一束速度大小确定且方向平行的电子流,某人设计了一种实验装置,其截面图如题9图所示。其中EABCD为一接地的金属外壳。在A处有一粒子源,可以同时向平行于纸面的各个方向射出大量的速率不等的电子。忽略电子间的相互作用力,这些电子进入一垂直于纸面向里的圆形区域匀强磁场后,仅有一部分能进入右侧的速度选择器MNPQ。已知圆形磁场半径为R;速度选择器的MN和PQ板都足够长,板间电场强度为E(图中未画出电场线),匀强磁场垂直于纸面向里大小为B2,电子的电荷量大小为e,质量为m。调节圆形区域磁场的磁感应强度B1的大小,直到有电子从速度选择器右侧射出。求:
(1)速度选择器的MN板带正电还是负电?能从速度选择器右侧射出的电子的速度
大小、方向如何?
(2)是否所有从粒子源A处射出并进入磁场的速度大小为(1)问中
的电子,最终都能从速度选择器右侧射出?若能,请简要证明,并求出圆形磁场的磁感应强度B1的大小;若不能,请说明理由。(不考虑电子“擦”到金属板的情形以及金属板附近的边界效应)
(3)在最终能通过速度选择器的电子中,从圆形区域磁场出射时距AE为
的电子在圆形磁场中运动了多长时间?
如图1所示,一质量为m的滑块(可视为质点)沿某斜面顶端A由静止滑下,已知滑块与斜面间的动摩擦因数
和滑块到斜面顶端的距离
的关系如图2所示。斜面倾角为37°,长为L。有一半径
的光滑竖直半圆轨道刚好与斜面底端B相接,且直径BC与水平面垂直,假设滑块经过B点时没有能量损失。当滑块运动到斜面底端B又与质量为m的静止小球(可视为质点)发生弹性碰撞(已知:
,
)。求:
(1)滑块滑至斜面底端B时的速度大小;
(2)在B点小球与滑块碰撞后小球的速度大小;
(3)滑块滑至光滑竖直半圆轨道的最高点C时对轨道的压力。