已知曲线的极坐标方程为,直线的参数方程是: .(Ⅰ)求曲线的直角坐标方程,直线的普通方程;(Ⅱ)求曲线与直线交与两点,求长.
首项为正数的数列 { a n } 满足 a n + 1 = 1 4 ( a n 2 + 3 ) , n ∈ N * . (Ⅰ)证明:若 a 1 为奇数,则对一切 n ≥ 2 , a n 都是奇数; (Ⅱ)若对一切 n ∈ N * ,都有 a n + 1 > a n ,求 a 1 的取值范围。
用分析法证明:
在平面直角坐标系O中,直线与抛物线相交于、两点。 (Ⅰ)求证:“如果直线过点,那么=”是真命题; (Ⅱ)写出(Ⅰ)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
用三段论证明函数在(,1上是增函数。
设是数列的前项和,,. ⑴求的通项; ⑵设,求数列的前项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号