游客
题文

如图1,已知抛物线的顶点为,且经过原点,与轴的另一个交点为
求抛物线的解析式;
在抛物线的对称轴上,点在抛物线上,且以四点为顶点的四边形为平行四边形,求点的坐标;
连接,如图2,在轴下方的抛物线上是否存在点,使得 与相似?若存在,求出点的坐标;若不存在,说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 二次函数在给定区间上的最值 计算器—基础知识
登录免费查看答案和解析
相关试题

(本题10分)△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线AC、直线BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α (0°<α<90°).

(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),
①试判别△DEF的形状,并说明理由;
②判断四边形ECFD的面积是否发生变化,并说明理由.
(2)设直线ED交直线BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;

(本题8分) 已知:D为△ABC所在平面内一点,且DB=DC,DE⊥AB,DF⊥AC,垂足分别是E、F,DE=DF.
(1)当点D在BC边上时(如图),判断△ABC的形状(直接写出答案);

(2)当点D在△ABC内部时,(1)中的结论是否一定成立?若成立,请证明;若不成立,请举出反例(画图说明).
(3)当点D在△ABC外部时,(1)中的结论是否一定成立?若成立,请证明;若不成立,请举出反例(画图说明).

(本题10分) 已知:如图,9×9的网格中(每个小正方形的边长为1)有一个格点△ABC.

(1)利用网格线,画∠CAB的角平分线AQ,画BC的垂直平分线,交AQ于点D,交直线AB于点E;
(2)连接CD、BD,判断△CDB的形状,并说明理由;
(3)求AE的长.

(本题8分)如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.

(1)求证:BE⊥AC;
(2)若∠A=50°,求∠FME的度数.

(本题8分)如图,△ABC中,∠A=60°.

(1)求作一点P,使得点P到B、C两点的距离相等,并且点P到AB、BC的距离也相等(尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,若∠ACP=15°,求∠ABP的度数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号