(本小题满分12分)某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有次选题答题的机会,选手累计答对
题或答错
题即终止其初赛的比赛:答对
题者直接进入决赛,答错
题者则被淘汰.已知选手甲答对每个问题的概率相同,并且相互之间没有影响,答题连续两次答错的概率为
.
⑴求选手甲可进入决赛的概率;
⑵设选手甲在初赛中答题的个数为,试求
的分布列,并求
的数学期望.
(本小题满分12分)已知数列满足
,
(
).
(Ⅰ) 证明数列是等比数列,并求出数列
的通项公式;
(Ⅱ)设,数列
的前n项和为
,若对于任意
,都满足
成立,求实数m的取值范围.
(本题12分)数列{xn}满足x1=1,x2=,且
+
=
(n≥2),
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)令,求数列{bn}的前n项和
的值.
如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,求出山高CD.
(本题12分)已知等比数列{an}的公比q=3,前3项和S3=.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若函数f(x)=Asin(2x+φ)(A>0,0<φ<π)在x=处取得最大值,且最大值为a3,
求函数f(x)的解析式.
已知|a|=1,a·b=,(a-b)·(a+b)=
,
求:(1)a与b的夹角;
(2)a-b与a+b的夹角的余弦值.