(本小题满分12分)济南高新区引进一高科技企业,投入资金720万元建设基本设施,第一年各种运营费用120万元,以后每年增加40万元;每年企业销售收入500万元,设表示前
年的纯收入.(
=前
年的总收入-前
年的总支出-投资额)
(Ⅰ)从第几年开始获取纯利润?
(Ⅱ)若干年后,该企业为开发新产品,有两种处理方案:
①年平均利润最大时,以480万元出售该企业;
②纯利润最大时,以160万元出售该企业;
问哪种方案最合算?
已知函数.
(1)试问该函数能否在处取到极值?若有可能,求实数
的值;否则说明理由;
(2)若该函数在区间上为增函数,求实数
的取值范围.
在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:
分组 |
频数 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
合计 |
![]() |
(1)列出频率分布表,并画出频率分布直方图;
(2)估计纤度落在中的概率及纤度小于
的概率是多少?
(3)从频率分布直方图估计出纤度的众数、中位数和平均数.
已知的展开式的二项式系数和比
的展开式的系数和大992,求
的展开式中:①二项式系数最大的项;②系数的绝对值最大的项。
已知,其中
是自然常数,
(1)讨论时,
的单调性、极值;
(2)是否存在实数,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
已知在区间[0,1]上是增函数,在区间
上是减函数,又
.
(1) 求的解析式;
(2) 若在区间(m>0)上恒有
≤x成立,求m的取值范围。