(本小题满分12分)济南高新区引进一高科技企业,投入资金720万元建设基本设施,第一年各种运营费用120万元,以后每年增加40万元;每年企业销售收入500万元,设表示前
年的纯收入.(
=前
年的总收入-前
年的总支出-投资额)
(Ⅰ)从第几年开始获取纯利润?
(Ⅱ)若干年后,该企业为开发新产品,有两种处理方案:
①年平均利润最大时,以480万元出售该企业;
②纯利润最大时,以160万元出售该企业;
问哪种方案最合算?
设数列的前
项和为
,且满足
.
(1)求,
,
,
的值并写出其通项公式;(2)证明数列
是等比数列.
已知.
(1)若曲线在
处的切线与直线
平行,求a的值;
(2)当时,求
的单调区间.
如图,椭圆上的点M与椭圆右焦点
的连线
与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)F1是椭圆的左焦点,C是椭圆上的任一点,证明:;
(3)过且与AB垂直的直线交椭圆于P、Q,若
的面积是20
,求此时椭圆的方程.
设函数.
(1)若在
时有极值,求实数
的值和
的极大值;
(2)若在定义域上是增函数,求实数
的取值范围.
已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.