如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点,训练时要求A、B两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线y=上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A、B两船恰好在直线y=x上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).
发现C船时,A、B、C三船所在位置的坐标分别为A(_______,_______)、B(_______,_______)和C(_______,_______);
发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由
如图,AB ∥CD∥GF,∠1:∠D:∠B=2:3:4,求∠1的度数?
已知∠AGE=∠DHF,∠1=∠2,则图中的平行线有几对?分别是?为什么?
如图,AB∥CD,直线FG平分∠AOE,∠1=40°,则∠2是多少度?
如图,已知抛物线经过
,
两点,顶点为
.
(1)求抛物线的解析式;
(2)将绕点
顺时针旋转90°后,点
落到点
的位置,将抛物线沿
轴平移后经过点
,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与轴的交点为
,顶点为
,若点
在平移后的抛物线上,且满足
的面积是
面积的2倍,求点
的坐标.
某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
x(万元) |
1 |
2 |
2.5 |
3 |
5 |
yA(万元) |
0.4 |
0.8 |
1 |
1.2 |
2 |
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出yB与x的函数关系式.
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式.
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?