如图,抛物线与
轴交于
两点,与
轴相交于点
.连结AC、BC,B、C两点的坐标分别为B(1,0)、
,且当x=-10和x=8时函数的值
相等.
求a、b、c的值;
若点
同时从
点出发,均以每秒1个单位长度的速度分别沿
边运动,其中一个点到达终点时,另一点也随之停止运动.连结
,将
沿
翻折,当运动时间为几秒时,
点恰好落在
边上的
处?并求点
的坐标及四边形
的面积;
上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D,对称轴与x轴的交点为E,若△ODE与△OBC相似,求新抛物线的解析式。
甲、乙两地相距100千米,一辆汽车从甲地开往乙地,将汽车由甲地到达乙地所用的时间t(小时)表示为汽车速度v(千米/小时)的函数,并画出函数的图象。
若反比例函数的图象经过(1,3)点,
(1)求该反比例函数的解析式;
(2)求一次函数y=2x+1与该反比例函数的图象的交点坐标。
如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上。
(1)求m,k的值;
(2)求直线AB的函数表达式。
反比例函数的图象经过点A(2 ,3),
⑴求这个函数的解析式;
⑵请判断点B(1 ,6)是否在这个反比例函数的图象上,并说明理由。
如图,等腰梯形中,AB∥DC,AD=BC=5,DC=7,AB=13,动点P从点A出发,以每秒2个单位的速度沿AD→DC→CB→BA向终点A运动,同时点Q从点B出发,以每秒1个单位的速度沿BA向终点A运动,设运动时间为t秒。
⑴求梯形的高为多少?
⑵分段考虑,当t为何值时,四边形PQBC为平行四边形时?
⑶在整个运动过程中,是否存在某一时刻,与
重合?