如图,抛物线与
轴交于
两点,与
轴相交于点
.连结AC、BC,B、C两点的坐标分别为B(1,0)、
,且当x=-10和x=8时函数的值
相等.
求a、b、c的值;
若点
同时从
点出发,均以每秒1个单位长度的速度分别沿
边运动,其中一个点到达终点时,另一点也随之停止运动.连结
,将
沿
翻折,当运动时间为几秒时,
点恰好落在
边上的
处?并求点
的坐标及四边形
的面积;
上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D,对称轴与x轴的交点为E,若△ODE与△OBC相似,求新抛物线的解析式。
计算: .
求各式中的实数x.
(1);(2)
(本题10分)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.
(1)直接写出点A、B的坐标:A(,)、B(,);
(2)若抛物线y=-x2+bx+c经过点A、B,请求出这条抛物线的解析式;
(3)当≤x≤7,在抛物线上存在点P,使△ABP的面积最大,那么△ABP最大面积是.(请直接写出结论,不需要写过程)
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
如图,过点B的直线l:交y轴于点A,与反比例函数
的图象交于点C(2,n)和点D.
(1)求m和n的值,及另一交点D的坐标;
(2)求△COD的面积。