(12分)为了在如图所示的直河道旁建造一个面积为5000m2的矩形堆物场,需砌三面砖墙BC、CD、DE,出于安全原因,沿着河道两边需向外各砌10m长的防护砖墙AB、EF,若当BC的长为xm时,所砌砖墙的总长度为ym,且在计算时,不计砖墙的厚度,求
(1)y关于x的函数解析式y=f(x);
(2)若BC的长不得超过40m,则当BC为何值时,y有最 小值,并求出这个最小值.
设函数定义域为
,且
.
设点是函数图像上的任意一点,过点
分别作直线
和
轴的垂线,垂足分别为
.
(1)写出的单调递减区间(不必证明);
(2)设点的横坐标
,求
点的坐标(用
的代数式表示);
(3)设为坐标原点,求四边形
面积的最小值.
等比数列满足
,
,数列
满足
(1)求的通项公式;
(2)数列满足
,
为数列
的前
项和.求
;
(3)是否存在正整数,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
某海域有、
两个岛屿,
岛在
岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线
,曾有渔船在距
岛、
岛距离和为8海里处发现过鱼群。以
、
所在直线为
轴,
的垂直平分线为
轴建立平面直角坐标系。
(1)求曲线的标准方程;
(2)某日,研究人员在、
两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),
、
两岛收到鱼群在
处反射信号的时间比为
,问你能否确定
处的位置(即点
的坐标)?
设函数,其中
;
(1)若的最小正周期为
,求
的单调增区间;
(2)若函数的图象的一条对称轴为
,求
的值.
已知集合,
集合,
,
求实数的取值范围.