游客
题文

某海域有两个岛屿,岛在岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发现过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系。

(1)求曲线的标准方程;
(2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知定义在R上的函数f(x) 同时满足:①R,a为常数);②;③当时,≤2。
求:(Ⅰ)函数的解析式;(Ⅱ)常数a的取值范围。

设函数,若在点处的切线斜率为
(Ⅰ)用表示
(Ⅱ)设,若对定义域内的恒成立,
(ⅰ)求实数的取值范围;
(ⅱ)对任意的,证明:

设点为圆上的动点,过点轴的垂线,垂足为.动点满足(其中不重合).
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过直线上的动点作圆的两条切线,设切点分别为.若直线与(Ⅰ)中的曲线交于两点,求的取值范围.

如图,垂直平面,点上,且
(Ⅰ)求证:
(Ⅱ)若二面角的大小为,求的值.

设公比为正数的等比数列的前项和为,已知,数列满足
(Ⅰ)求数列的通项公式;
(Ⅱ)是否存在,使得是数列中的项?若存在,求出的值;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号