如图,已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在轴上的截距为,交椭圆于A、B两个不同点.(1)求椭圆的方程; (2)求m的取值范围; (3)求证直线MA、MB与轴始终围成一个等腰三角形.
设命题:在区间上是减函数;命题:是方程的两个实根,不等式对任意实数恒成立;若为真,试求实数的取值范围。
设。 (Ⅰ)若在其定义域内为单调递增函数,求实数的取值范围; (Ⅱ)设,且,若在上至少存在一点,使得成立,求实数的取值范围。
设为正实数,,,。 (Ⅰ)如果,则是否存在以为三边长的三角形?请说明理由; (Ⅱ)对任意的正实数,试探索当存在以为三边长的三角形时的取值范围。
已知等比数列,公比为,,。 (Ⅰ)求的通项公式; (Ⅱ)当,求证:。
已知为坐标原点,,. (Ⅰ)求的单调递增区间; (Ⅱ)若的定义域为,值域为[2,5],求的值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号