在数学课的学习中,我们已经接触了很多代数恒等式,知道可以用图形的面积来解释这些代数恒等式.如图①可以解释恒等式;
(1)如图②可以解释恒等式=.
(2)如图③是由4个长为,宽为
的长方形纸片围成的正方形,
①用面积关系写出一个代数恒等式:.
②若长方形纸片的面积为3,且长比宽长3,求长方形的周长(其中a.b都是正数,结果可保留根号).
(1)(分解因式);(2)
.
先化简,再求值:,其中
.
如图,点B、F、C、E在同一直线上,∠A=∠D,BF=CE,AC∥DF.求证:△ABC≌△DEF
如图,抛物线与
轴相交于点
(﹣1,0)、
(3,0),与
轴相交于点
,点
为线段
上的动点(不与
、
重合),过点
垂直于
轴的直线与抛物线及线段
分别交于点
、
,点
在
轴正半轴上,
=2,连接
、
.
(1)求抛物线的解析式;
(2)当四边形是平行四边形时,求点
的坐标;
(3)过点的直线将(2)中的平行四边形
分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)