(本小题满分14分)在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点。
(1)证明:A1B1⊥C1D;
(2)当的大小。
(本小题满分12分)
某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名学生进行调查,下表是这n名学生的日睡眠时间的频率分布表。
序号(i) |
分组(睡眠时间) |
频数(人数) |
频率 |
1 |
[4,5) |
6 |
0.12 |
2 |
[5,6) |
0.20 |
|
3 |
[6,7) |
a |
|
4 |
[7,8) |
b |
|
5 |
[8,9) |
0.08 |
(1)求n的值.若,将表中数据补全,并画出频率分布直方图.
(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是5)作为代表.若据此计算的上述数据的平均值为7.2,求
的值,并由此估计该学校学生的日平均睡眠时间在7.5小时以上的概率.
(本小题满分12分)
在,角A,B,C的对边分别为
。
(1)判断的形状;
(2)若的值。
(本小题14分)已知函数在
处取得极值。
(Ⅰ)求函数的解析式;
(Ⅱ)求证:对于区间上任意两个自变量的值
,都有
;
(Ⅲ)若过点可作曲线
的三条切线,求实数
的取值范围。
(本小题满分12分)如图所示,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过D点的直线l与曲线C相交于不同的两点M、N,问是否存在这样的直线使
与
平行,若平行,求出直线
的方程, 若不平行,请说明理由.
(本小题满分12分)如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.
(Ⅰ)求证:PC⊥平面BDE;
(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;
(Ⅲ)求线段PA上点Q的位置,使得PC//平面BDQ.