某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?
已知函数f(x)=x3﹣3x. (1)求函数f(x)在[﹣3,]上的最大值和最小值; (2)过点P(2,﹣6)作曲线y=f(x)的切线,求此切线的方程.
已知函数f1(x)=sinx,且fn+1(x)=fn′(x),其中n∈N*,求f1(x)+f2(x)+…+f100(x)的值.
已知P(﹣1,1),Q(2,4)是曲线y=x2上的两点,求与直线PQ平行且与曲线相切的切线方程.
已知抛物线y=x2,求过点(﹣,﹣2)且与抛物线相切的直线方程.
求下列函数的导数: (1)y=+2x; (2)y=lgx﹣sinx; (3)y=2sinxcosx; (4)y=.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号