(本小题满分15分)
在平面直角坐标系中,已知点
,过点
作抛物线
的切线,其切点分别为
、
(其中
).
(1)求与
的值;
(2)若以点为圆心的圆
与直线
相切,求圆
的面积;
(3)过原点
作圆
的两条互相垂直的弦
,求四边形
面积的最大值.
(满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足。
(Ⅰ)求角C的大小;
(Ⅱ)求的最大值。
已知函数的两条切线PM、PN,切点分别为M、N.
(I)当时,求函数
的单调递增区间;
(II)设|MN|=,试求函数
的表达式;
(III)在(II)的条件下,若对任意的正整数,在区间
内总存在
成立,求m的最大值.
如图,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于
轴上方,
.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离
的最小值.
已知函数的图象在点M(-1,f(-1))处的切线方程为x+2y+5=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.
设的内角
所对的边长分别为
,
.
(Ⅰ)求的值;
(Ⅱ)求的最大值.