我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律。例如,在三角形中第三行的三个数1,2,1,恰好对应
展开式中的系数;第四行的四个数1,3,3,1,恰好对应着
展开式中的系数等等。
(1)根据上面的规律,写出的展开式。
(2)利用上面的规律计算:
已知与
-3成反比例,且当
=4时,
=5,求:
(1)与
之间的函数关系式;
(2)当时,求
的值.
已知:如图,AB=3,AC=4,AB⊥AC,BD=12,CD=13,(1)求BC的长度;(2)证明:BC⊥BD.
解分式方程:
(8分)在甲村至乙村的公路有一块山地正在开发.现有一C处需要爆破.已知点C
与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,
如图13所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公
路AB段是否有危险,是否需要暂时封锁? 请通过计算进行说明。
如图,正方形OABC的面积为9,点O为坐标原点,点B在函数
(k>0,x>0)的图象上,点P(m、n)是函数(k>0,x>0)的图象上任意一点,
过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.
(1)求B点坐标和k的值;
(2)当S=时,求点P的坐标。