设椭圆的左,右两个焦点分别为
,短轴的上端点为
,短轴上的两个三等分点为
,且
为正方形。
(1)求椭圆的离心率;
(2)若过点作此正方形的外接圆的切线在
轴上的一个截距为
,求此椭圆方程。
已知函数,其中
.
(1)设函数,若当
时,
有意义,求
的取值范围;
(2)是否存在是实数,使得关于
的方程
对于任意非正实数
,均有实数根?若存在,求
;若不存在,说明理由.
从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 |
[75,85) |
[85,95) |
[95,105) |
[105,115) |
[115,125) |
频数 |
6 |
26 |
38 |
22 |
8 |
(1)在答题卡上作出这些数据的频率分布直方图:
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
已知二次函数,当
时,函数取最小值
,且
.
(1)求的解析式;
(2)若在区间
上不单调,求实数
的取值范围.
已知集合,集合
.
(1)若,求实数
的取值范围;
(2)若,求实数
的取值范围.
设函数.
(1)若,解不等式
;
(2)如果,
,求
的取值范围.