游客
题文

如图,在四棱锥A-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(1)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(2)求证:平面BDE⊥平面SAC;
(3)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由.

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

若a,b是两个不共线的非零向量,t∈R.若|a|=|b|=2且a与b夹角为60°,t为何值时,|a-tb|的值最小?

已知定义在R上的奇函数 f(x)有最小正周期2,且当x∈(0,1)时, f(x)=.
(1)求 f(x)在[-1,1]上的解析式;
(2)证明: f(x)在(0,1)上是减函数.

已知sinα=,求tan(α+)+.

已知函数
(Ⅰ)若函数上是减函数,求实数的取值范围;
(Ⅱ)令,是否存在实数,当是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
(III)当时,证明:

已知斜三棱柱的底面是直角三角形,,侧棱与底面所成角为,点在底面上射影D落在BC上.

(Ⅰ)求证:平面
(Ⅱ)若点D恰为BC中点,且,求的大小;
(III)若,且当时,求二面角的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号