(本小题满分16分)
设数列
的前项和为
,已知
(
).
(1)求
的值;
(2)求证:数列
是等比数列;
(3)抽去数列
中的第1项,第4项,第7项,……,第
项,……,余下的项顺序不变,组成一个新数列
,若
的前
项的和为
,求证:
.
市中心医院用甲、乙两种药片为手术后的病人配制营养餐,已知甲种药片每片含5单位的蛋白质和10单位的铁质,售价为3元;乙种药片每片含7单位的蛋白质和4 单位的铁质,售价为2元。若病人每餐至少需要35单位的蛋白质和40单位的铁质,应使用甲、乙两种药片各几片才能既满足营养要求又使费用最省?
解关于
的不等式:
设
,求函数
的最小值及相应
的值.
已知椭圆
的离心率为
,定点M(1,0),椭圆短轴的端点是B1,B2,且
(1)求椭圆C的方程;
(2)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使PM平分∠APB?若存在,求出点P的坐标;若不存在,说明理由,
已知函数
.
(1)若函数f(x)的图象在
处的切线斜率为3,求实数m的值;
(2)求函数f(x)的单调区间;
(3)若函数
在[1,2]上是减函数,求实数m的取值范围.