如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场Ⅰ和Ⅱ,两电场的边界均是边长为L的正方形(不计电子所受重力).在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置.
在电场Ⅰ区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置.
若将左侧电场Ⅱ整体水平向右移动L/n(n≥1),仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场Ⅰ区域内由静止释放电子的所有位置.
如图所示,光滑水平面轨道上有三个木块,A、B、C,质量分别为mA=mc=2m,mB=m,A、B用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。开始时A、B以共同速度v0运动,C静止。某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三滑块速度恰好相同。求B与C碰撞前B的速度。
如图所示,两足够长的光滑金属导轨竖直放置,相距为L, 一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放。导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。求:
(1)磁感应强度的大小B;
(2)电流稳定后,导体棒运动速度的大小v;
(3)流经电流表电流的最大值
(4)若导体棒从进入磁场到达电流稳定状态过程中通过电流表的电量为q,求导体棒从释放到电流稳定过程所经历的时间。
一列简谐横波,沿x轴传播,t1 = 0和t2 = 0.25s两个时刻的波形图如图所示,求该波的传播速度的可能值.
设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示.为了安全,返回舱与轨道舱对接时,必须具有相同的速度.已知返回舱返回过程中需克服火星的引力做功,返回舱与人的总质量为m,火星表面的重力加速度为g,火星的半径为R,轨道舱到火星中心的距离为r,不计火星表面大气对返回舱的阻力和火星自转的影响,则该宇航员乘坐的返回舱在火星表面开始返回时至少需要具有多少能量才能返回轨道舱?
(14分)如图,光滑水平面AB与竖直面的半圆形导轨在B点相连接,导轨半径为R,一质量为m的静止木块在A处压缩弹簧,释放后,木块获得一向右的初速度,当它经过B点进入导轨瞬间对导轨的压力是其重力的7倍,之后向上运动恰能通过轨道顶点C,不计空气阻力,试求:
(1)弹簧对木块所做的功;
(2)木块从B到C过程中克服摩擦力做的功;
(3)木块离开C点落回水平面所需的时间和落回水平面时的动能。