函数f(x)=sin2x-
-
.
(1)若x∈[,
],求函数f(x)的最值及对应的x的值.
(2)若不等式[f(x)-m]2<1在x∈[,
]上恒成立,求实数m的取值范围.
若向量m=(sinωx,0),n=(cosωx,-sinωx)(ω>0),在函数f(x)=
m·(m+n)+t的图象中,对称中心到对称轴的最小距离为,且当x∈[0,
]时,f(x)的最大值为1.
(1)求函数f(x)的解析式.
(2)求函数f(x)的单调递增区间.
已知函数f(x)=sinsin(
+
).
(1)求函数f(x)在[-π,0]上的单调区间.
(2)已知角α满足α∈(0,),2f(2α)+4f(
-2α)=1,求f(α)的值.
已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=时,f(x)的最大值为2.
(1)求f(x)的解析式.
(2)在闭区间[,
]上是否存在f(x)的对称轴?如果存在求出其对称轴.若不存在,请说明理由.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<,x∈R)的图象的一部分如图所示.
(1)求函数f(x)的解析式.
(2)当x∈[-6,-]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.