在长方形中画出5条线,把它分成的块数与画线的方式有直接关系.按如图1的方式画线,可以把它分成10块.(1)请你在图2中画出5条线,使得把这个长方形分成的块数最少(重合的线只看做一条),最少可分成 块;
(2)请你在图2中画出5条线,使得把这个长方形分成的块数最多,最多可分成 块.
(画出图形不写画法和理由)
如图①,正方形的顶点
的坐标分别为
,顶点
在第一象限.点
从点
出发,沿正方形按逆时针方向匀速运动,同时,点
从点
出发,沿
轴正方向以相同速度运动.当点
到达点
时,
两点同时停止运动,设运动的时间为
秒.
(1)求正方形的边长.
(2)当点在
边上运动时,
的面积
(平方单位)与时间
(秒)之间的函数图象为抛物线的一部分(如图②所示),求
两点的运动速度.
(3)求(2)中面积(平方单位)与时间
(秒)的函数关系式及面积
取最大值时点
的坐标.
(4)若点保持(2)中的速度不变,则点
沿着
边运动时,
的大小随着时间
的增大而增大;沿着
边运动时,
的大小随着时间
的增大而减小.当点
沿着这两边运动时,使
的点
有 个.
(抛物线的顶点坐标是
.)
小张骑车往返于甲、乙两地,距甲地的路程(千米)与时间
(小时)的函数图象如图所示.
(1)小张在路上停留 小时,他从乙地返回时骑车的速度为 千米/时.
(2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止,途中小李与小张共相遇3次.请在图中画出小李距甲地的路程(千米)与时间
(小时)的函数的大致图象.
(3)小王与小张同时出发,按相同路线前往乙地,距甲地的路程(千米)与时间
(小时)的函数关系式为
.小王与小张在途中共相遇几次?请你计算第一次相遇的时间.
如图,在中,
为
边上一点,且
.
(1)求证:.
(2)若平分
,
,求
的度数.
如图,为正比例函数
图象上的一个动点,
的半径为
,设点
的坐标为
.
(1)求与直线
相切时点
的坐标.
(2)请直接写出与直线
相交、相离时
的取值范围.
某班组织一次数学测试,全班学生成绩的分布情况如下图:
(1)全班学生数学成绩的众数是 分,全班学生数学成绩为众数的有 人.
(2)全班学生数学成绩的中位数是 分.
(3)分别计算两个小组超过全班数学成绩中位数的人数占全班人数的百分比.