( 10分)如图,已知点,经过A、B的直线
以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线
上以每秒1个单位的速度沿直线
向右下方向作匀速运动.设它们运动的时间为
秒.
(1)用含
的代数式表示点P的坐标;
(2)过O作OC⊥AB于C,过C作CD⊥
轴于D,问:
为何值时,以P为圆心、1为半径的圆与直线OC相切?并说明此时
与直线CD的位置关系.
(1)先化简,再求值:x(4-x)+(x+1)(x-1),其中.
(2)解方程::
(本小题满分14分)已知抛物线y=x2+4x+m(m为常数)
经过点(0,4).
(1)求m的值;
(2)将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.
①试求平移后的抛物线的解析式;
②试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2
被圆P所截得的弦AB的长度;若不存在,请说明理由.
(本小题满分14分)如图,在边长为8的正方形ABCD
中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作圆O的切线交边BC于点N.
(1)求证:△ODM∽△MCN;
(2)设DM=x,求OA的长(用含x的代数式表示);
(3)在点O运动的过程中,设△CMN的周长为p,试用含x的代数式表示p,你能发现怎样的结论?
(本小题满分12分)2011年3月11日13时46分日本发生了9.0级大地震,伴随着就是海啸.山坡上有一颗与水平面垂直的大树,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,测得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面的角∠ADC=60°,AD=4米.
(1)求∠DAC的度数;
(2)求这棵大树折断前高是多少米?(注:结果精确到个位)(参考数据:)
(本小题满分10分)矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:
(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.
(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .
(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.