游客
题文

【选做题】本题包括A,B,C,D四小题,请选定其中两题作答,每小题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.
A.选修4—1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为AMPA的中点,
过点M引圆O的割线交该圆于BC两点,且∠BMP=100°,
BPC=40°,求∠MPB的大小.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.
⑴求圆C的极坐标方程;
是圆上一动点,点满足,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.

如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.

⑴证明:圆心O在直线AD上;
⑵证明:点C是线段GD的中点.

已知点,动点的轨迹曲线满足,过点的直线交曲线两点.
(1)求的值,并写出曲线的方程;
(2)求△面积的最大值.

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.

如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且

(1)求三棱锥DABC的表面积;
(2)求证AC⊥平面DEF
(3)若MBD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号