.选修4—5:不等式选讲
若正数a,b,c满足a+b+c=1,求的最小值.
为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:
(Ⅰ)若用表中数据所得频率代替概率,则处罚10元时与处罚20元时,行人会闯红灯的概率的差是多少?
(Ⅱ)若从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.
求这两种金额之和不低于20元的概率;
②若用X表示这两种金额之和,求X的分布列和数学期望.
已知函数f(x)=cos(2x-)+sin2x-cos2x.
(Ⅰ)求函数f(x)的最小正周期及其图象的对称轴方程;
(Ⅱ)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.
已知函数.
(Ⅰ)请写出函数在每段区间上的解析式,并在图中的直角坐标系中作出函数
的图象;
(II)若不等式对任意的实数
恒成立,求实数
的取值范围.
已知在直角坐标系中,曲线
的参数方程为:
(
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,直线
的极坐标方程为:
.
(Ⅰ)写出曲线和直线
在直角坐标系下的方程;
(II)设点是曲线
上的一个动点,求它到直线
的距离的最小值.
如图,是圆的内接四边形,
,过
点的圆的切线与
的延长线交于
点,证明:
(Ⅰ)
(II)