如图,虚线下方有足够大的场强大小E=5.0×103 V/m和上方场强为8mg/3q的匀强电场,方向均水平向右。质量均为m=1.5×10-2kg的A、B小球,其中B球为绝缘小球且不带电,被长为R的绝缘丝线悬挂在O点刚好静止在虚线上, A球带电荷量为qA=+6.0×10-6C,在竖直平面内的以某一初速度v竖直进入电场,运动到B点速度刚好水平,同时与B球发生正碰并立即粘在一起围绕O点做半径为R=0.7m完整的圆周运动,假设甲、乙两球可视为质点,g取10 m/s2。(sin53°=0.8,c0s53°=0.6)
(1)假设初速度v="20m/s" ,试求小球A与B球碰撞前能运动的水平位移的大小和整个过程中电场力对小球做功的最大值。
(2)如果小球刚好能做完整的圆周运动,试求碰撞前A球的最小速度和绳子所受的最大拉力分别多大。
如图所示,轻绳悬挂一质量为m的小球,现对小球再施加一个力F,使小球静止在绳子与竖直方向成60°角的位置上,重力加速度为g。
(1)若F为水平方向,求F的大小;
(2)若要使F的取值最小,求F的大小和方向。
某校举行托乒乓球跑步比赛,赛道为水平直道,比赛距离为s。比赛时,某同学将球置于球拍中心,以大小为a的加速度从静止开始做匀加速直线运动,当速度达到v0时,再以v0做匀速直线运动跑至终点.整个过程中球一直保持在球拍中心不动.比赛中,该同学在匀速直线运动阶段保持球拍的倾角为θ0,如图所示,设球在运动中受到的空气阻力大小与其速度大小成正比,方向与运动方向相反,不计球与球拍之间的摩擦,球的质量为m,重力加速度为g.
(1)求空气阻力大小与球速大小的比值k;
(2)求在加速跑阶段球拍倾角θ随速度v变化的关系式;
(3)整个匀速跑阶段,若该同学速度仍为v0,而球拍的倾角比θ0大了β并保持不变,不计球在球拍上的移动引起的空气阻力变化,为保证到达终点前球不从球拍上距离中心为r的下边沿掉落,求β应满足的条件.
图l中,质量为的物块叠放在质量为
的足够长的木板上方右侧,木板放在光滑的水平地面上,物块与木板之间的动摩擦因数为
=0.2.在木板上施加一水平向右的拉力F,在0~3s内F的变化如图2所示,图中F以
为单位,重力加速度
.整个系统开始时静止.
(1)求1s末木板与物块各自的速度.
(2)求2s末木板与物块各自的速度.
(3)在同一坐标系中画出0~3s内木板和物块的图象,据此求0~3s内物块相对于木板滑过的距离。
固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F作用下向上运动,推力F与小环速度v随时间变化规律如图所示,取重力加速度g=10m/s2。求:
(1)小环的质量m;
(2)细杆与地面间的倾角a。
一辆值勤的警车停在直公路边,当警员发现从他旁边以的速度匀速行驶的货车有违章行为时,决定去追赶,经
警车发动起来,以加速度
做匀加速运动,试问:
(1)在警车追上货车之前,两车间的最大距离是多少?
(2)若警车能达到的最大速度是,达到最大速度后匀速运动。则警车发动起来后至少要多长的时间才能追上违章的货车?