(本小题满分13分)已知函数.(1)当且,时,试用含的式子表示,并讨论的单调区间;(2)若有零点,,且对函数定义域内一切满足的实数有. ①求的表达式;②当时,求函数的图象与函数的图象的交点坐标.
等差数列中,且成等比数列, (1)求数列的通项公式;(2)求前20项的和。
如图,在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.
已知 (1)求; (2)求的值(其中).
函数,若不等式的解集为.(Ⅰ)求的值;(Ⅱ)若函数在上的最小值为1,求实数的值.
理科(本小题14分)已知函数,当时,函数取得极大值. (Ⅰ)求实数的值;(Ⅱ)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(Ⅲ)已知正数满足求证:当,时,对任意大于,且互不相等的实数,都有
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号