甲、乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息如下图所示。
甲调查表明:每个甲鱼池平均出产量从第一年1万只甲鱼上升到第6年2万只。
乙调查表明:甲鱼池个数由第1年30个减少到第6年10个,请你根据提供的信息说明:
(1)第2年甲鱼池的个数及全县出产甲鱼总数;
(2)到第6年这个县的甲鱼养殖业的规模比第1年是扩大了还是缩小了?说明理由;
(3)哪一年的规模最大?说明理由
已知数列的前
项和为
,且
,设
.
(1)证明:数列是等比数列;
(2)求数列的前
项和
;
(3)设,
,若数列
的前
项和为
,求不超过
的最大的整数值.
如图,几何体中,四边形
为菱形,
,
,面
∥面
,
、
、
都垂直于面
,且
,
为
的中点,
为
的中点.
(1)求证:为等腰直角三角形;
(2)求二面角的余弦值.
已知函数,若存在
,使
,则称
是函数
的一个不动点.设二次函数
.
(1)对任意实数,函数
恒有两个相异的不动点,求
的取值范围;
(2)在(1)的条件下,若的图象上
两点的横坐标是
的不动点,且
两点关于直线
对称,求
的最小值.
已知向量,
,且
与
满足
,其中实数
.
(1)试用表示
;
(2)求的最小值,并求此时
与
的夹角
的值.
已知函数,
.
(1)求的值;
(2)若,
,求
.