为了了解某年级1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.
(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;
(2)求调查中随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
(本小题满分16分)己知函数
(1)若 ,求函数
的单调递减区间;
(2)若关于x的不等式 恒成立,求整数 a的最小值:
(3)若 ,正实数
满足
,证明:
(本小题满分16分)在数列 中,已知
,
为常数.
(1)证明: 成等差数列;
(2)设 ,求数列 的前n项和
;
(3)当时,数列
中是否存在三项
成等比数列,且
也成等比数列?若存在,求出
的值;若不存在,说明理由.
(本小题满分16分)如图,有一个长方形地块ABCD,边AB为2km, AD为4 km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位: ).
(1)求S关于t的函数解析式,并指出该函数的定义域;
(2)是否存在点P,使隔离出的△BEF面积S超过3 ?并说明理由.
(本小题满分14分)在平面直角坐标系xOy中,己知点 ,C, D分别为线段OA, OB上的动点,且满足AC=BD.
(1)若AC=4,求直线CD的方程;
(2)证明:OCD的外接圆恒过定点(异于原点O).
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CP
PB,求证:CP
PA:
(2)若过点A作直线⊥平面ABC,求证:
//平面PBC.