设函数
,且
,
.
(1)求
的解析式;
(2)画出
的图象.
已知函数
(
,
为正实数).
(Ⅰ)若
,求曲线
在点
处的切线方程;
(Ⅱ)求函数
的单调区间;
(Ⅲ)若函数
的最小值为
,求
的取值范围.
|
如图,在四棱锥
中,平面
平面
.底面
为矩形,
,
.
;
的大小.
如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为
(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为
的概率?
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.请问某个家庭获奖的概率为多少?
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为
,求
的分布列及数学期望.
在锐角
中,
,
,
分别为内角
,
,
所对的边,且满足
.
(Ⅰ)求角
的大小;
(Ⅱ)若
,且
,
,求
的值.
已知集合
,若集合
,且对任意的
,存在
,使得
(其中
),则称集合
为集合
的一个
元基底.
(Ⅰ)分别判断下列集合
是否为集合
的一个二元基底,并说明理由;
①
,
;
②
,
.
(Ⅱ)若集合
是集合
的一个
元基底,证明:
;
(Ⅲ)若集合
为集合
的一个
元基底,求出
的最小可能值,并写出当
取最小值时
的一个基底
.