游客
题文

(本小题满分12分)某班同学到野外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:(I)如图(1),先在平地取一个可以直接到达A、B的点C,并分别延长AC到D,BC到E,使DC=AC,BC=EC,最后测出DE的距离即为AB的长。(II)如图(2),先过B点作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离。阅读后回答下列问题:

(1)方案(I)是否可行?为什么?
(2)方案(II)是否切实可行?为什么?
(3)方案(II)中作BF⊥AB,ED⊥BF的目的是           ;若仅满足∠ABD=∠BDE≠90°,方案(II)是否成立?
(4)方案(II)中,若使BC=n·CD,能否测得(或求出)AB的长?理由是        ,若ED=m,则AB=     

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

(本题满分10分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.

(1)现随机转动转盘一次,停止后,指针指向1的概率为
(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.

如图,在直角坐标系xOy中,直线与双曲线相交于
A(-1,a)、B两点,BC⊥x轴,垂足为C,△BOC的面积是1.

(1)求m、n的值;
(2)求直线AC的解析式;
(3)结合图象直接写出当时,的取值范围.

如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切。

(本题满分分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是;
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶油的概率.

(本题满分分)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.

(1)求证:AD⊥DC;
(2)若AD=2,AC=,求AB的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号