根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分钟缩短为36分钟,其速度每小时将提高260km,求提速后的火车速度.(精确到1km/h)
如图1,已知 , ,点 在 上,连接 并延长交 于点 .
(1)猜想:线段 与 的数量关系为 ;
(2)探究:若将图1的 绕点 顺时针方向旋转,当 小于 时,得到图2,连接 并延长交 于点 ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;
(3)拓展:图1中,过点 作 ,垂足为点 .当 的大小发生变化,其它条件不变时,若 , ,直接写出 的长.
某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元 台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第 天 为整数)的生产成本为 (元 台), 与 的关系如图所示.
(1)若第 天可以生产这种设备 台,则 与 的函数关系式为 , 的取值范围为 ;
(2)第几天时,该企业当天的销售利润最大?最大利润为多少?
(3)求当天销售利润低于10800元的天数.
如图, 为半圆 的直径, 为半圆 上一点, 与过点 的切线垂直,垂足为 , 交半圆 于点 .
(1)求证: 平分 ;
(2)若 ,试判断以 , , , 为顶点的四边形的形状,并说明理由.
已知关于 的一元二次方程 有两个实数根 , .
(1)求 的取值范围;
(2)若 ,求 的值.
某校开展"爱国主义教育"诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.
(1)小文诵读《长征》的概率是 ;
(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.