抛物线
上纵坐标为
的点
到焦点的距离为2.
(Ⅰ)求
的值;
(Ⅱ)如图,

为抛物线上三点,且线段
,
,
与
轴交点的横坐标依次组成公差为1的等差数列,若
的面积是
面积的
,求直线
的方程.
选修4-4:坐标系与参数方程已知直线l:
(t为参数)恒经过椭圆C:
(j为参数)的右焦点F.
(Ⅰ)求m的值;
(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|·|FB|的最大值与最小值.
选修4-1:几何证明选讲如图,已知圆上的
,过C点的圆的切线与BA的延长线交于E点.
(Ⅰ)求证:∠ACE=∠BCD;
(Ⅱ)若BE=9,CD=1,求BC的长.
已知函数
,
,
是常数.
(1)求函数
的图象在点
处的切线方程;
(2)若函数
图象上的点都在第一象限,试求常数
的取值范围;
(3)证明:
,存在
,使
.
如图,在斜三棱柱
中,
是
的中点,
⊥平面
,
,
.
(Ⅰ)求证:
;
(Ⅱ)求二面角
的余弦值.
已知数列
的前
项和为
,
.
(1)求数列
的通项公式;
(2)设
,
=
,记数列
的前
项和
.若对
,
恒成立,求实数
的取值范围.