本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分.
设双曲线,
是它实轴的两个端点,
是其虚轴的一个端点.已知其一条渐近线的一个方向向量是
,
的面积是
,
为坐标原点,直线
与双曲线C相交于
、
两点,且
.
(1)求双曲线的方程;
(2)求点的轨迹方程,并指明是何种曲线.
已知圆C:,直线l:
(m∈R).(Ⅰ)证明:不论m取什么实数,直线l与圆恒交于两点.
(Ⅱ)求直线被圆C截得的弦长最小时l的方程.
为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量 AB=100m,BC=80m,AE=30m,AF=20m.
(1)求直线EF的方程.
(2)应如何设计才能使草坪的占地面积最大?
正方体ABCD—A1B1C1D1的棱长为
⑴求△AB1D1的面积;⑵求三棱锥的体积。
如图,四边形ABCD是矩形,面ABCD,过BC作平面BCFE交AP于E,
交DP于F,求证:四边形BCFE是梯形
已知在正方体中,E、F分别是
的中点,
求证:平面平面