陕西理)已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.
(1) 求动圆圆心的轨迹C的方程;
(2) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是的角平分线, 证明直线l过定点.
安徽理)(如图,圆锥顶点为。底面圆心为
,其母线与底面所成的角为
。
和
是底面圆
上的两条平行的弦,轴
与平面
所成的角为
,
(1)证明:平面与平面
的交线平行于底面;
(2)求。
安徽理)(设椭圆的焦点在
轴上
(1)若椭圆的焦距为1,求椭圆
的方程;
(2)设分别是椭圆的左、右焦点,
为椭圆
上第一象限内的点,直线
交
轴与点
,并且
,证明:当
变化时,点
在某定直线上。
如图所示的多面体中,是菱形,
是矩形,
面
,
.
(1)求证:平;
(2)若,求四棱锥
的体积.
如图,在斜三棱柱中,O是AC的中点,
平面
,
,
.
(1)求证:平面
;
(2)求二面角的余弦值.