直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为点E,F.(1)求证:△FOE≌△DOC;
(2)求sin∠OEF的值;
(3)若直线EF与线段AD,BC分别相交于点G,H,求
的值.
解方程:
计算:.
已知:如图,矩形ABCD,AB = 4,∠ACB = 30°.点E从点C出发,沿折线CA—AD以每秒一个单位长度的速度运动,过点E作EF∥CD交BC于点F,同时过点E作EG⊥AC交直线BC于点G,设运动的时间为t,△EFG与△ABC重叠部分的面积为S,当点E运动到点D时停止运动.
(1)当点B与点G重合时,求此时t的值;
(2)直接写出S与t之间的函数关系式和相应的自变量取值范围;
(3)当t = 4时,将△EFG绕点E顺时针旋转一个角度(
),∠GEF的两边分别交矩形的边于点M,点N.当△MEN为等腰三角形时,求此时△MEN的面积.
如图,一次函数分别交y轴、x轴于A、B两点,抛物线
过A、B两点,作垂直x轴的直线
,交x轴于H,交直线AB于M,交这个抛物线于N.
(1)求这个抛物线的解析式;
(2)若M在第一象限,求当t取何值时,MN有最大值?最大值是多少?
(3)若∠ABO=∠BNH,求t的值.
已知,矩形ABCD中,延长BC至E,使BE = BD,F为DE的中点,连结AF、CF.
(1)若AB = 3,AD = 4,求CF的长;
(2)求证:∠ADB = 2∠DAF.