如图(a)所示,间距为l、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度恒为B不变;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上也由静止释放。在ab棒运动到区域Ⅱ的下边界EF之前,cd棒始终静止不动,两棒均与导轨接触良好。
已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为l,在t=tx时刻(tx未知)ab棒恰好进入区域Ⅱ,重力加速度为g。求:
区域I内磁场的方向;
通过cd棒中的电流大小和方向;
ab棒开始下滑的位置离区域Ⅱ上边界的距离;
ab棒开始下滑至EF的过程中,回路中产生总的热量。
(结果用B、l、θ、m、R、g表示)
一机枪每分钟发射600发子弹,每发子弹的质量为 10 g ,发射时速度沿水平方向为 80 m/s。发射子弹时用肩抵住枪托,求枪托对肩水平方向的平均作用力是多少?
高台滑雪运动员经过一段滑行后从斜坡上O点水平飞出,斜坡与水平面的夹角θ=37°,运动员连同滑雪板的总质量m=50kg,他落到了斜坡上的A点,A点与O点的距离s=12m,如图所示。忽略斜坡的摩擦和空气阻力的影响,重力加速度g=10m/s2。
(sin37°=0.60;cos37°=0.80)
(1)运动员在空中飞行了多长时间?
(2)求运动员离开O点时的速度大小。
(3)运动员落到斜坡上顺势屈腿以缓冲,使他垂直于斜坡的速度在t=0.50s的时间内减小为零,设缓冲阶段斜坡对运动员的弹力可以看作恒力,求此弹力的大小。
“神舟”六号载人飞船在空中环绕地球做匀速圆周运动,某次经过赤道的正上空P点时,对应的经线为西经157.5°线,飞船绕地球转一圈后,又经过赤道的正上空P点,此时对应的经线为经度180°.已知地球半径为R,地球表面的重力加速度为g,地球自转的周期为T0.
(1)求载人飞船的运动周期;
(2)求飞船运行的圆周轨道离地面高度h的表达式.(用T0、g和R表示).
小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳恰好断掉,球飞行水平距离d后落地。如图所示。已知握绳的手离地面高度为d,手与球之间的绳长为
d,重力加速度为g。忽略手的运动半径和空气阻力,绳能承受的最大拉力为定值。
(1)求绳断开时小球的速度;
(2)求绳能承受的最大拉力多大;
(3)若手的位置始终不变,改变绳长使手与球间的绳长变为
,要使绳仍在球运动到最低点时恰好断掉,求小球飞行的水平距离。
如图,将一根光滑的细金属棒折成V形,顶角为2
,其对称轴竖直,在其中一边套上一个质量为m的小金属环P,
(1)若固定V形细金属棒,小金属环P从距离顶点O为 x的A点处由静止自由滑下,则小金属环由静止下滑至顶点O点时需多少时间?
(2)若小金属环P随V形细金属棒绕其对称轴以角速度
匀速转动时,小金属环与棒保持相对静止,则小金属环离对称轴的距离为多少?